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Abstract

An investigation is presented on the nature of train-induced ground vibration propagation. It is based on
a theoretical model for the track and a layered ground. Results are given of the responses of the ground and
track to a moving harmonic or quasi-static load on the rails. The dispersion characteristics of the
propagating modes of vibration in the track and the ground are presented and the excitation of vibration in
the ground via the track is discussed in relation to these propagating wavenumbers. An important feature
of the coupled system is the coincidence of a propagating wavenumber in the track and the ground that
gives rise to the main peak in the vibration spectrum in the frequency range of interest. It has been
observed, in some cases, that when the train speed reaches a value close to the speed of propagating waves
in the ground, the response to the quasi-static axle loads of the train reaches a peak. The relationship
between this critical speed and the wave speeds in the track and ground is considered in order to investigate
the effectiveness of controlling this peak response load speed by increasing the bending stiffness of the
track/embankment structure or by reducing its mass. It is found that such treatments may, or may not,
have a significant effect depending on the ground stiffness and layering. For the multiple quasi-static
moving axle loads of a train the loading has strong, closely spaced harmonic components. The effect on the
vibration spectrum of the superposition of vibration from multiple axles is shown to lead to the
reinforcement or suppression of some frequencies as a function of axle spacing and speed. This is
demonstrated with calculated results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing interest is being shown in the study of the vibration in the ground produced by
trains. The impetus for much of this has been the recognition that in certain circumstances the
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operation of high-speed trains could lead to increased vibration. Two aspects of this are of
concern to different groups of engineers. The vibration produced in the ground and propagated
away from the track to line-side buildings concerns those evaluating the environmental impact of
new lines. In most cases this is dealt with in a similar manner to environmental noise. Track
engineers, on the other hand, will be concerned about possible high dynamic displacements in the
track structure itself. The concerns in that case include vehicle ride and safety, possible damage to
the ballast or embankment materials and the effects of large displacements on very close line-side
structures such as electrification masts. Those dealing with environmental vibration may also be
concerned with the dynamics of the track, especially where modification to the track structure
may be a means of controlling vibration. For example Kaynia et al. [1] have considered using a
stiff beam under the track to reduce environmental vibration.
Because of the interest in the field in recent years, a number of models for vibration from trains

have been developed [1–5]. Most of these models only take into account the vibration generated
by moving, ‘quasi-static’ axle loads. Ground vibrations induced by these moving axle loads are
independent of the dynamics of the vehicles and of track quality. Lai et al. [4] show, by
comparison with measurement results, that predictions from such a model may underestimate the
actual response level, especially for higher frequencies, as a result of excluding responses to
dynamic excitations at wheel–rail contact points.
A model has previously been produced by Sheng et al. [6] for the propagation of vibration from

a single oscillating load, moving along a railway track coupled to the ground; the ground is
modelled as a layered half-space. In another paper [7], this is extended by coupling, via multiple
wheel/rail contact points, to models representing a number of carriages. This model can be used to
predict environmental vibration. It includes vibration components from the quasi-static loading
of the multiple axles of a moving train and the excitation of dynamic forces due to the undulations
of the track top. In the present paper, this track and ground model is used to examine the effects
of the coupling between the track structure and the ground. Such an investigation is important for
the understanding of the overall mechanisms involved in the generation of ground vibration from
trains. The resonance of the track and ground at the cut-on frequency of the ground is examined.
It is shown that this can be understood from the dispersion plots of the track and ground. This
leads to some conclusions on the phenomenon of the ‘critical train speed’ which, as it is
approached, has been observed to lead to a strong increase in the vibration levels of the track and
ground surface (e.g., [8]). Observations are also made concerning the idea of increasing the track/
embankment bending stiffness or reducing its mass as a means of avoiding this phenomenon. The
harmonic components generated by the passage of the axles of similar wagons are examined by
accounting for multiple moving harmonic loads of a single frequency.

2. The model

A diagram of the model of the track and ground system based on Ref. [6] is shown in Fig. 1. A
ballasted railway track is aligned in the x direction and has a contact width 2b with the ground
surface. The mass per unit length and bending stiffness of the two rails taken as a single Euler
beam are denoted by mR and EI ; respectively. The lower ‘beam’, representing the sleeper mass,
has a mass mS per unit length but no bending stiffness. The rail pad is represented by the complex
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stiffness kP ¼ k0
pð1þ iZP sgnðoÞÞ between these two beams, where k0

p is the stiffness of the rail pads
for a unit length of track, ZP is the damping loss factor and o is the circular frequency. The ballast
is modelled as a visco-elastic layer with a lateral width 2b and an infinite length. Its mass per unit
track length is denoted by mB and only the vertical complex stiffness kB is taken into account. The
loss factor of the ballast is denoted by ZB: Having considered that the sleepers and ballast
distribute the vertical wheel–rail forces onto the ground over the width of the track structure, it is
assumed that there is only a normal contact force in the contact plane which is uniformly
distributed in the y direction from y ¼ �b to b:
The vertical moving forces are denoted by P1ðtÞ;P2ðtÞ;y;PMðtÞ; from right to left, where M is

the number of the forces. At time t ¼ 0; the longitudinal co-ordinates of the forces are denoted by
a1; a2;y; aM : The forces move uniformly along the rail in the positive direction at the train speed
c: The vertical displacements of the rail and sleeper are denoted by wRðx; tÞ and wSðx; tÞ: The
model calculates the longitudinal, lateral and vertical downwards displacements of any point
(x, y) on the ground surface, denoted by u10ðx; y; tÞ; u10ðx; y; tÞ and w10ðx; y; tÞ: However, only the
vertical component is considered in the present study.
The ground is modelled as a layered elastic medium of infinite extent. Within each

of the parallel layers the ground is isotropic and homogeneous. In Ref. [6], flexibility
matrices are derived for each layer that relate the stresses and displacements at the top of the
layer to those at the bottom of the layer. A flexibility matrix is also derived for the half-space
substratum. These are combined to form a flexibility matrix representing the response
at the surface of the whole ground. These are all functions of the wavenumbers in the x and y
directions.
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Fig. 1. Model for the track/ground system with multiple moving loads.
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The differential equation of motion of the rail beam is given by

EI
@4wRðx; tÞ

@x4
þ mR

@2wRðx; tÞ
@t2

þ kP½wRðx; tÞ � wSðx; tÞ� ¼
XM
l¼1

dðx � ct � alÞPlðtÞ; ð1Þ

where dð:Þ is the Dirac-delta function. Eq. (1) is the same as that in Ref. [6] except for the forcing
function. The forcing function in the case of multiple forces is

Pðx; tÞ ¼
XM
l¼1

dðx � ct � alÞPlðtÞ: ð2Þ

It is assumed, in the present paper, that the forces PlðtÞ are harmonic with the same circular
frequency O; i.e.,

PlðtÞ ¼ *PlðOÞeiOt ðl ¼ 1; 2;y;MÞ ð3Þ

where *PlðOÞ is the complex amplitude of the lth force. Thus, Eq. (2) becomes

Pðx; tÞ ¼
XM
l¼1

dðx � ct � alÞ *PlðOÞeiOt: ð4Þ

By applying the single-dimensional Fourier transform pairs

%fðb; tÞ ¼
Z

N

�N

f ðx; tÞe�ibx dx; f ðx; tÞ ¼
1

2p

Z
N

�N

%fðb; tÞeibx db: ð5Þ

Eq. (4) yields

%Pðb; tÞ ¼ *PðOÞeiðO�bcÞt; ð6Þ

where

*PðOÞ ¼ *P ¼
XM
l¼1

*PlðOÞe�ibal : ð7Þ

Compared with the case of a single moving harmonic force, Eq. (6) represents a single ‘equivalent
load’ in the wavenumber domain. The amplitude of this equivalent load is given by Eq. (7), and is
a function of wavenumber b: Therefore, the approach developed to solve the differential
equations of the track–ground system in Ref. [6], can be applied here straightforwardly.
Using the superposition principle, the vertical displacement on the ground surface due to

excitation at frequency O is given by

w10ðx; y; tÞ ¼
XM
l¼1

½wO
10ðx � al � ct; yÞ *PlðOÞ�eiOt; ð8Þ

where wO
10ðx; yÞ is the displacement amplitude produced by a single unit harmonic load of

frequency O moving at speed c and observed in the moving frame of reference.
In previous work [6,9], results have been presented as the displacement response in the moving

frame of reference due to a single moving load oscillating at a single frequency. These
visualizations of the surface wave-field are instructive, but, for the effects of multiple loads, it is
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important to derive spectra of vibration response at particular fixed positions. By this means, a
presentation of results closer to that obtained by measurements may be achieved.
The vertical displacement spectrum of w10ðx; y; tÞ is denoted by Swðx; y; f ;OÞ; where f is the

frequency at which the spectrum is evaluated. Due to motion, a single frequency O generates
multiple frequencies f . Fourier transforming Eq. (8) with respect to time t; gives the ground
surface displacement spectrum expressed in terms of the summation of individual loads, i.e.,

Swðx; y; f ;OÞ ¼ S0
wðx; y; f ;OÞ

XM
l¼1

*PlðOÞe�ial ðO�2pf Þ=c

 !
; ð9Þ

where S0
wðx; y; f ;OÞ is the displacement spectrum due to a single unit harmonic force of frequency

O moving along the rail at speed c. Eq. (9) indicates that the magnitude of spectrum for the
multiple moving harmonic forces is independent of the distance x along the track, just as it is for a
single load [6].
The term

SPðf Þ ¼
XM
l¼1

*PlðOÞe�ial ðO�2pf Þ=c ð10Þ

in Eq. (9) may be identified as the load spectrum which reflects the harmonic components of the
excitation produced by the passage of the axles of a train. Since a shift of x co-ordinates does not
change the magnitude of the load spectrum, the magnitudes of the displacement (velocity or
acceleration) spectra are independent of the absolute positions of the multiple, single-frequency,
forces.

3. Parameters for track–ground systems

This investigation is performed using numerical results from the above model. The numerical
results are presented for two ballasted tracks (one lighter and one heavier) and two grounds (one
stiffer and one softer), combinations of which result in four track–ground systems. The
parameters of the tracks and the grounds assumed for this study are listed in Tables 1–4. It has
been found [10], for the frequency range between about 2 and 100Hz, that it is usually sufficient to
model real soils as a single layer of weathered material about 2m deep overlying a half-space of
stiffer material. The parameters of Table 1 represent a London Clay site in this way and those of
Table 2 a site of alluvial soil overlying gravel deposits. The important parameters of interest in the
present study are the wave speeds of the materials in each layer.
In order to demonstrate the vibration characteristics of the ground and its response to a load,

Section 4.1 presents the dispersion characteristics of the ground and Section 4.2 investigates the
surface receptance of the ground as a function of the track wavenumber. Sections 4.3 and 4.4
present the dispersion curves for the grounds and the tracks. Section 4.5 presents the receptances
of the tracks and grounds to demonstrate the effect of the resonance of the track and ground at
the first cut-on frequency of the layered ground.
Results for the response to moving quasi-static axle loads are investigated in Section 5.

Section 5.1 uses results for a single axle load to show the effect of the critical train speed for the
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Table 2

Parameters for a softer ground

Layer Depth (m) Young’s

modulus

(106N/m2)

Poisson

ratio

Density

(kg/m3)

Loss factor P-wave

speed (m/s)

S-wave

speed (m/s)

Rayleigh

wave speed

(m/s)

1 2.0 30 0.47 1550 0.1 340 81.1 77

Half-space 360 0.49 2000 0.1 1755 245 233

Table 3

Parameters for a lighter ballasted railway track

Mass of rail beam per unit length of track 120 kg/m

Bending stiffness of rail beam 1.26	 107Nm2

Loss factor of the rail 0.01

Rail pad stiffness 3.5	 108N/m2

Rail pad loss factor 0.15

Mass of sleepers per unit length of track 490 kg/m

Mass of ballast per unit length of track 1200 kg/m

Ballast stiffness per unit length of track 3.15	 108N/m2

Loss factor of ballast 1.0

Contact width of railway and ground 2.7m

Table 4

Parameters for a heavier ballasted railway track

Mass of rail beam per unit length of track 120 kg/m

Bending stiffness of rail beam 1.26	 107Nm2

Loss factor of the rail 0.01

Rail pad stiffness 3.5	 108N/m2

Rail pad loss factor 0.15

Mass of sleepers per unit length of track 490 kg/m

Mass of ballast per unit length of track 3300 kg/m

Ballast stiffness per unit length of track 1.775	 108N/m2

Loss factor of ballast 1.0

Contact width of railway and ground 2.7m

Table 1

Parameters for a stiffer ground

Layer Depth (m) Young’s

modulus

(106N/m2)

Poisson

ratio

Density

(kg/m3)

Loss factor P-wave

speed (m/s)

S-wave

speed (m/s)

Rayleigh

wave speed

(m/s)

1 2.0 60 0.44 1500 0.1 360 117.9 112

Half-space 360 0.49 2000 0.1 1755 245 233
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two tracks and grounds. The speeds that are found are interpreted in terms of the dispersion
characteristics of the track and ground combination. Section 5.2 presents results for multiple
loads in order to demonstrate the effect of the pattern of the axles of a train.

4. Results for harmonic loading

4.1. The dispersion characteristics of the ground only

Fig. 2 shows the propagating wavenumbers in the softer ground (Table 2) for the P-SV modes
plotted against frequency. It is these modes, involving compression and vertical shear motion, not
the horizontal shear modes (SH), that are excited by a vertical load (see Appendix A). On this
dispersion diagram, the phase velocity of a propagating mode at a particular frequency is given by
the inverse slope of a straight line from the origin to the point on its dispersion curve at that
frequency. The group velocity, i.e., the speed of transport of energy by the propagating wave, is
given by the inverse slope of the dispersion curve itself. The cut-on frequencies of the ground, at
which propagating modes in the free ground first appear, can be seen in Fig. 2 to be at 13, 27, 51,
70 and 93Hz. These modes all cut-on at the wavenumber of the shear wave in the half-space
substratum. The P-SV mode dispersion curves for the stiffer ground are given in Fig. 3. In this
case propagating modes appear at 22, 47 and 83Hz. These dispersion diagrams are obtained by an
eigenvalue analysis of the ground system equations [6] with the damping set to zero. An
explanation of the method of calculation of the dispersion curves from the theory presented in
Ref. [6] is given in Appendix A.
An alternative method of identifying the dispersion curves is to calculate the Fourier

transformed displacements generated by a load for different frequencies and wavenumbers, and
then project the displacement peaks on the wavenumber–frequency plane. As an example, the
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amplitudes of the transformed vertical displacements are calculated for the stiffer ground surface
generated by a unit vertical point harmonic load. If the amplitudes are plotted three-
dimensionally against wave number b in the x direction (the wave number g in the y direction
has been set to zero) and frequency f ; then peaks in this plot indicate the propagating wave
modes. Such a three-dimensional plot is produced, using shading to represent the height of the
peaks, in Fig. 4. The singularities that, in the absence of damping, form the lines of the dispersion
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diagram, become peaks in the amplitude of response for the model of the ground that includes
damping. Thus the P-SV dispersion curves are revealed in Fig. 4. The figure indicates that, in
addition to the propagating wave modes shown in Fig. 3, for some frequencies, an extra mode
which has a higher wave speed than the shear wave speed in the underlying half-space is also
excited by the surface load (see between 40 and 75Hz). This extra mode is a so-called ‘leaky mode’
[11] associated with the interface between the layer and the half-space materials. In Ref. [11] it is
shown that these waves radiate energy into the substratum and therefore do not propagate far
laterally. Although, as Fig. 4 shows, this mode has an observable amplitude at the surface under
the load, it does not normally play an important part in the transmission of vibration across the
ground surface.

4.2. The receptance of the ground as a function of wavenumber along the track

It has been shown in Ref. [6] that the coupling of the track with the ground is achieved via the
use of the term *HðbÞ: *HðbÞ represents the Fourier transformed (with respect to x only) steady state
vertical displacements of points on the x-axis due to a unit vertical harmonic load (moving or
stationary) of frequency O distributed uniformly in the y direction over the width jyjpb. That is, it
is the vertical direct receptance of the ground due to a spatially harmonic load of wavenumber b in
the x direction. *HðbÞ is given by an infinite integral

*HðbÞ ¼
1

p

Z
N

0

*Q33ðb; g;O� bcÞ
sin gb
gb

dg ð11Þ

where *Q33 is the term of the flexibility matrix of the ground giving the vertical response to a
vertical load. It is used here as a moving-load Green’s function of the ground [6,12].
It can be seen from Eq. (11) that *HðbÞ is independent of the railway track parameters except for

the width of its contact with the ground surface. The spatial distribution of that load in the x

direction is contained in the description *HðbÞ since it is expressed as a function of the wavenumber
in the track and the distribution as a function of x is recoverable from *HðbÞ by the inverse Fourier
transform. For now, however, *HðbÞ allows the coupling between the track and ground to be
examined in terms of the wavenumbers of waves propagating in the ground.
With no damping, an unbounded *HðbÞ occurs in response to an excitation at a wavenumber on

the dispersion curve. The wavenumbers excited by a moving load are represented by a ‘load speed
line’ defined by b ¼ jO� 2pf j=c: In other words, at the intersections on the dispersion diagram of
the dispersion curves and the line b ¼ jO� 2pf j=c an infinite response appears. When the
damping in the ground is considered finite, peaks occur at these values of b: For example Fig. 2
shows load speed lines corresponding to O=2p ¼ 30Hz and c ¼ 0 and c ¼ 50m/s.

*HðbÞ has been calculated for O=2p ¼ 30Hz for the softer ground for load speeds c ¼ 0 (Fig. 5)
and c ¼ 50m/s (Fig. 6). The negative imaginary part of *HðbÞ represents the ‘active’ component
that determines the power flow from the load applied by the track into the ground and the real
part of *HðbÞ; the ‘reactive’ part, i.e., the part of the amplitude of vibration response that does not
lead to propagation away into the ground. Fig. 5, for c ¼ 0; shows that the highest amplitude
peak corresponds to the wavenumber of the first mode at frequency 30Hz (bD2:4 radians/m, see
Fig. 2). At this wavenumber, the active component is high and the reactive component goes
through zero indicating that the amplitude of vibration excited at this wavenumber is associated
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with a wave propagating away into the ground and that the ground appears to the load as a
damper (i.e., carrying away energy). It can be seen that, when jbj is larger than this (shorter
wavelengths), the imaginary part of *HðbÞ decays quickly and the real part is positive. The ground
therefore behaves as a spring stiffness and little energy is propagated into the ground. Since the
reactive component is the higher of the two at these wavenumbers, these waves are expected to
contribute mainly to the near field. At small wavenumbers (large wavelengths) the behaviour is
approximately mass-dominated (the receptance has a negative real part).
Fig. 6, for c ¼ 50m/s, shows peaks in the imaginary part at wavenumbers of 1.1 and�6.8 rad/m,

corresponding to the intersections of the load speed line and the first wave in Fig. 2. This figure
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shows the same behaviour as the stationary load case for the active and reactive components but
the two peaks corresponding to the main propagating wave going backwards and forwards are
shifted in accordance with the Doppler effect. The peak at 1.1 rad/m has a larger amplitude and
that at �6.8 rad/m a smaller amplitude than in the stationary load situation, indicating a greater
response in the wave behind the load than in front.

4.3. Dispersion curves of the tracks and the grounds together

As discussed above, the dispersion curves of a free ground (a ground without a track structure)
may be calculated by finding the real roots for the dispersion equation. The P-SV dispersion
curves of the softer ground have been shown in Fig. 2 while those for the stiffer ground are shown
in Fig. 3. However, for a ground with a track, this method is not applicable and the method of
identifying the dispersion curves using the shaded plot of the response to discrete frequencies of
excitation, as in Fig. 4, has been used.
When a track rests on a ground, the propagation properties of the ground are different in

different directions. Since the track is modelled as a two-dimensional structure located in the
xz-plane, the propagation property in the y direction is not affected by the presence of the track.
However, in the x direction, the propagation property of the ground will be modified by the track.
Fig. 7 shows the shaded plot of the amplitudes of the Fourier transformed vertical displacements
of the surface of the stiffer ground in the presence of the heavier track. These displacements are
produced by a unit stationary harmonic load acting on the rails. Comparing Figs. 4 and 7, it can
be seen that, not only the modes of the free ground, but also other modes are excited. These new
modes, particularly those with the highest wavenumber, are the propagation modes of the track
modifed by its coupling to the ground. Fig. 7 also shows that the first mode of the track–ground
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system has a greater wavenumber, therefore lower phase velocity, than the first mode of the free
ground. This mode corresponds to the first mode of the ground carrying the extra mass (and
bending stiffness) of the track.

4.4. Dispersion curves for the track only

Eq. (1) is the force balance equation for the rail in the time and spatial domain. Eqs. (40)–(43)
of Ref. [13] present the complete force balance equations for the track as a function of the track
wavenumber, b; and circular frequency o: From these equations, the displacement amplitudes of
the rail, *wR; and the ground surface, *w10; due to a stationary unit harmonic load can be expressed
as

*wRðbÞ ¼
b1kP= *HðbÞ þ ðb1a22 � b2a12Þ

a11kP= *HðbÞ þ ða11a22 � a12a21Þ
; ð12Þ

*w10ðb; g ¼ 0Þ ¼
a11b2 � a21b1

a11kP= *HðbÞ þ ða11a22 � a12a21Þ

*Q33ðb; 0;oÞ
*HðbÞ

; ð13Þ

where a11; a12; a21; a22; b1; b2 are terms involving the wavenumber, b; frequency, o; and the
mechanical properties of the track. They are:

a11 ¼ ½kP þ kB � ðmS þ 1
3

mBÞo2�ðEIb4 þ kP � mRo2Þ � k2
P; ð14Þ

a12 ¼ �kPðkB þ 1
6 mBo2Þ ð15Þ

a21 ¼ �ðkB þ 1
6 mBo2ÞðEIb4 þ kP � mRo2Þ; ð16Þ

a22 ¼ kPðkB � 1
3

mBo2Þ ð17Þ

b1 ¼ kP þ kB � ðmS þ 1
3

mBÞo2
� �

; ð18Þ

b2 ¼ �ðkB þ 1
6

mBo2Þ: ð19Þ

The wavenumbers of the propagating modes of the track–ground system at frequency f may be
identified by the fact that, for no damping, both *w10 and *wR become infinite. Thus, from Eqs. (12)
and (13) the dispersion curves of a track on a ground are given by solutions for b of

a11kP= *HðbÞ þ ða11a22 � a12a21Þ ¼ 0: ð20Þ

If *HðbÞ is set to infinity, this gives the dispersion equation of a free track (the lower interface of the
track structure is unrestrained), i.e.,

a11a22 � a12a21 ¼ 0: ð21Þ

If *HðbÞ is set to zero, Eq. (20) yields the dispersion equation of a track on a rigid foundation

a11 ¼ 0: ð22Þ

Finally, if *HðbÞ is replaced by a constant 1=kG; then Eq. (20) results in the dispersion equation of a
track on a Winkler foundation, where kG denotes the complex stiffness of the foundation.
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Compared with the track on a rigid foundation, the presence of the ground adds both flexibility
and mass to the track; as a result, the wave speeds in the track are always lower than the wave
speeds in the ‘rigid-bed track’.
In the absence of a closed-form expression for *HðbÞ; the analytical formula for the dispersion

equation of a track on a ground is not obtainable. As an alternative, the dispersion curves of the
free ground, the free track and the rigid-bed track have been produced. Fig. 8 shows these curves
for the two tracks and the stiffer ground. From the figure it can be seen that, for a rigid-bed track,
a propagating mode exists only at frequencies above the first natural frequency of the track (88Hz
for the lighter track and 51Hz for the heavy track). For a track with either boundary condition,
propagating modes cease to exist at a certain frequency (67Hz for the lighter free track, 41Hz for
the heavy free track and 92Hz for the heavier rigid-bed track). This corresponds to the
antiresonance of the track in which the mass of sleeper and ballast vibrates on the stiffness of the
pad and ballast and the rail does not move. Propagating modes occur again from the second
natural frequency of the track.
If at some point (f0; b0), the dispersion curve of a free track intersects the dispersion curve of a

free ground, then since *Hðb0Þ ¼ N in the absence of damping (see Section 4.2), Eq. (21) holds at
this point. In other words, as a wave can propagate in both the free track and the free ground at
speed 2pf0=b0; this will also be a permissible solution for a propagating wave in the coupled
system.
A general analysis is difficult for the existence of propagating modes in a track–ground system

(i.e., the existence of real roots of b in Eq. (20)). However, for a track resting on a homogeneous
half-space, some points may be made.
For the homogeneous half-space, there is only one straight line on its dispersion diagram, i.e.,

the Rayleigh wave line. If, for a given frequency, the Rayleigh wave line is below the dispersion
curve of the free track but above the dispersion curve of the rigid-bed track, then it can be shown
that Eq. (20) has a real solution b; which is greater than the Rayleigh wavenumber but less than
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the wavenumber of the free track. This situation is shown diagrammatically in Fig. 9(a).
Alternatively, if the Rayleigh wavenumber is greater than the wavenumber of the free track
(therefore it is definitely greater than the wavenumber of the rigid-bed track), as shown in
Fig. 9(b), then it can be shown that the only possible real solution to Eq. (20) is a value of b
greater than the shear wavenumber but less than the Rayleigh wavenumber in the ground.
In terms of wave speed, therefore, it may be concluded that the phase speed of the lowest order

wave in a track resting on a homogeneous half-space cannot exceed the shear wave speed in the
half-space. For a light, stiff track it may still exceed the Rayleigh wave speed. For a heavy track
the wave speed in the track may be lower than both the shear wave speed and the Rayleigh wave
speed.

4.5. Receptances of the track–ground systems

4.5.1. Receptances of the tracks

Figs. 10 and 11 show the magnitude and phase of the receptances at the loading point on the
rails for each track on the softer and stiffer grounds. Also shown are results for the tracks resting
on a rigid foundation. It can be seen that, for the two cases that include the ground, there is a peak
response around the first ground cut-on frequency. Only at higher frequencies is the difference
between the receptances for a ground and a rigid foundation small. The effective stiffness of the
track below 10Hz is characterized by that of the ground and is considerably lower than the
stiffness at frequencies well above this first cut-on frequency.
There is a notable likeness in the shape of the spectrum of the predicted track receptances that

include the ground and measurements on real track such as those presented by Oscarsson and
Dahlberg [14]. Both the amplitude and phase have the same character even though the
measurements in Ref. [14] are clearly for a stiffer ground than either of the cases presented here.

4.5.2. Receptances of the grounds
Figs. 12 and 13 show the vertical displacements of the ground surface due to a unit stationary

harmonic load of varying frequency acting on the rails for the four combinations of the two tracks

ARTICLE IN PRESS

Frequency

×

Frequency

w
av

en
um

be
r

×

(a) (b)

Fig. 9. Diagram showing the relative locations of the dispersion curves of the free track, the fixed-bed track and the

ground. (a) When the free track mode has a lower wave speed than the Rayleigh wave in the ground; (b) when the free

track mode has a higher wave speed than the Rayleigh wave ——, Rayleigh wave of the ground, ........, shear wave of

the ground; – – –, free track mode; – 
 –, fixed-bed track; 	 , position of possible solution.

X. Sheng et al. / Journal of Sound and Vibration 272 (2004) 909–936922



ARTICLE IN PRESS

0 10 20 30 40 50 60 70 80 90 100
10

-9

10
-8

10
-7

0 10 20 30 40 50 60 70 80 90 100
-180

-90

0

90

180

Frequency (Hz)

R
ec

ep
ta

nc
e 

(m
/n

)
P

ha
se

 (
de

gr
ee

s)

Fig. 10. Receptances (magnitudes and phases) at the loading point on the rail of the lighter track for a stationary load.

——, the track on the stiffer ground; – – –, the track on the softer ground; – - – - –, the track on a rigid foundation.

0 10 20 30 40 50 60 70 80 90 100
10

-9

10
-8

10
-7

0 10 20 30 40 50 60 70 80 90 100
-180

-90

0

90

180

 

Frequency (Hz)

R
ec

ep
ta

nc
e 

(m
/n

)
P

ha
se

 (
de

gr
ee

s)

Fig. 11. Receptances (magnitudes and phases) of the loading point on the rail of the heavier track for a stationary load.

——, the track on the stiffer ground; – – –, the track on the softer ground; – - – - –, the track on a rigid foundation.
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and the two layered grounds. Fig. 12 is for the displacements of the point underneath the load
while Fig. 13 is for a point 10m from the track centreline. It can be seen from Fig. 12 that a
resonance occurs when a track rests on a layered ground. The resonance frequency is modified by
the presence of the track. For the stiffer ground with the lighter track, the resonance frequency is
22Hz, identical to the first cut-on frequency of the ground (Fig. 3). However, when the heavier
track is present, the resonance frequency is reduced to 18Hz. In the case of the softer ground, the
lighter track increases the resonance frequency from its first cut-on frequency, 13Hz (Fig. 2), to
16Hz. With the heavier track the response frequency is almost unchanged, i.e., about 13Hz.
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Fig. 13. Receptances (response of the ground to a force on the rail) at y ¼ 10m for a stationary load. ——, lighter
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It is also seen in Figs. 12 and 13 that, at very low frequencies (below 5Hz), a change in the track
mass does not significantly affect the responses of the ground surface. With increasing frequency,
the lighter track produces lower responses than the heavier track due to the increase in the
resonance frequency. However, for frequencies higher than the resonance frequencies, the heavier
track produces less response than the lighter track.
In the transfer receptance to 10m, Fig. 13, the first trough for the stiffer ground is found at

40Hz while for the softer ground it is at 30Hz. The low responses at these frequencies are due to
the loading width in the track/ground contact plane, which filters the propagating wave of the first
mode at a wavelength identical to the loading width. The contact width of the track/ground is
2b ¼ 2:7m (Table 3), which corresponds to a wavenumber of 2p=2b ¼ 2:327 rad/m. In the
dispersion diagrams, Fig. 3 for the stiffer ground and Fig. 2 for the softer ground, it can be
identified that the frequency corresponding to this wavenumber of the first propagating mode is
40Hz for the stiffer ground and 30Hz for the softer ground.

5. Results for quasi-static loading

5.1. Effects of the speed of a single axle load on the responses of track–ground systems

The effects of the speed of a single quasi-static axle load on the responses of track–ground
systems are investigated in this section. First in Section 5.1.1, the case of a track resting on a
homogeneous half-space is investigated. The situation of a track resting on a layered ground is
dealt with in Section 5.1.2.

5.1.1. Track on a homogeneous half-space
Two homogeneous half-spaces, one made of the upper layer material of the stiffer ground (see

Table 1), the other made of the upper layer material of the softer ground (see Table 2), are
considered here. The maximum displacements along the x-axis on the ground surface due to a
single unit constant force have been computed for different speeds and are plotted in Fig. 14.
Results are shown for the lighter and heavier tracks on the two homogeneous half-spaces. This
figure demonstrates that a sharp increase in vibration occurs as the load speed approaches a
certain ‘critical’ value. The speed at which these curves have their maximum value will be referred
to here as the ‘peak response load speed’. For the stiffer homogeneous half-space with the lighter
track, the peak occurs at a load speed of 112m/s, which is equal to the Rayleigh wave speed of the
ground. For the stiffer homogeneous half-space with the heavier track, the peak appears at 105m/s,
i.e., lower than the Rayleigh wave speed. For the softer homogeneous half-space, the corresponding
peaks for both the tracks appear at 77m/s, the Rayleigh wave speed.
Fig. 15 shows the dispersion curves of the free tracks and the homogeneous half-spaces.

Comparison of Figs. 14 and 15 show that, for a track/homogeneous half-space system, if the
propagating wavenumber in the free track is greater than the Rayleigh wavenumber at all
frequencies, then the peak response load speed is lower than the Rayleigh wave speed. However, if
the propagating wavenumber in the free track is equal to the Rayleigh wavenumber at some
frequency, then the peak response load speed equals the Rayleigh wave speed, and decreasing the
mass of the track further does not increase the peak response load speed.
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Under the action of the moving load, the response of the track/ground contains a broad range
of frequency components. This is indicated in Fig. 16, which shows the spectra of vertical velocity
responses on the surface of the softer homogeneous half-space due to a unit load moving along the
heavier track at the peak response load speed of 77m/s. The responses are shown at two positions,
y ¼ 0 and 10m. A broad peak occurs at a frequency (about 13Hz) lower than that corresponding
to the intersection of the free-track dispersion curve and the Rayleigh wave line of the half-space.
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Fig. 15. Dispersion curves of the free tracks and the homogeneous half-spaces. ——, for the heavier track; – – –, for the
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The shift in peak frequency is due to the material and radiation damping in the track/ground
structure.

5.1.2. Track on a layered ground

When a track rests on a layered ground, since there are several propagating modes existing in
the system, the effect of the load speed on the response becomes more complicated to analyze.
Fig. 17 shows the maximum displacements of different track and layered ground combinations

(corresponding to Tables 1–4) due to a unit constant load moving at different speeds. For the
stiffer ground with the lighter track, the peak response load speed is 130m/s, greater than the
Rayleigh wave speed of the upper layer (112m/s). This speed corresponds to a line passing
through the point A in Fig. 8 at which the free track and free-ground dispersion curves intersect.
This intersection, it will be recalled, corresponds to a point at which free waves can occur in the
coupled track–ground system. The direct excitation of the first mode in the ground and the free
track by a constant load travelling at 130m/s explains the peak response at this speed seen
in Fig. 17.
For the heavy track on the stiffer ground, the peak occurs at 110m/s, a little less than the

Rayleigh wave speed of the upper layer of the ground. From Fig. 8, the dispersion curve of the
free track is seen to have no intersection with the first dispersion curve of the ground in this case.
As in the case of the homogeneous half-space, where the dispersion curves do not intersect, the
peak response load speed is below the wave speeds in the ground.
In the case of the softer ground, although not shown graphically here, a similar correspondence

has been observed between the peak response load speed and the dispersion curves of the track/
ground structure. For the softer ground with the lighter track, the peak response load speed is
105m/s, greater than the Rayleigh wave speed of the upper layer (77m/s). For the heavier track
resting on the softer ground, the peak load speed is 90m/s, still greater than the Rayleigh wave
speed of the upper layer material, because, in this case, unlike the stiffer ground, the free-track
dispersion curve for the heavier track does intersect the curve for the first mode of the free ground.
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Fig. 16. Magnitudes of the vertical velocity spectra at y ¼ 0m (—) and at 10m (– – –) on the ground surface for the

heavier track on the softer homogeneous half-space when a unit load travels at the peak response load speed (77m/s).
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The observations above show that, when a track rests on a layered ground, the peak response
load speed may be determined by the first intersection of the free track dispersion curve and the
ground dispersion curve of the first mode for all frequencies. In other words, the peak response
load speed for a constant load is given by c ¼ 2pf0=b0; with b0 and f0 denoting the wavenumber
and frequency at the intersection. If there is no such intersection, because the free track wave
speed is lower than that of the first mode in the ground, then the peak response load speed is lower
than the Rayleigh wave speed in the upper layer. The frequency f0 is found to be 34Hz for the
combination of the lighter track and stiffer ground, 21Hz for the lighter track on the softer
ground, 25Hz for the heavier track on the softer ground and for the heavier track and softer
ground there is no intersection.
The vertical velocity response spectra at y ¼ 0m on the ground surface are shown in Fig. 18 for

the four track/ground combinations. In each case, a unit load moves along the track at the peak
response load speed for that combination of track and ground. It can be seen that a peak occurs in
the spectrum at a frequency lower than the corresponding value of f0: At very low frequencies, the
response at the peak response load speed is not affected by the change in the track mass although
the speeds themselves are quite different. Just below the main spectrum peak, the heavier track
leads to a higher response than the lighter track but at frequencies much higher than the peak, it
leads to lower response. Thus in considering track modification to control the level of vibration at
the peak response speed, a lighter, stiffer track may not be beneficial at all relevant frequencies,
although it must be remembered that the primary effects are those connected to the change of the
peak response load speed.
It can be seen in Figs. 14 and 17 that, when the load speed is well below the peak response load

speeds, the track mass makes little difference to the ground response; that is the responses for a
given ground are independent of the track. However, the peak response amplitude of the ground
with the lighter track is much lower than that of the ground with the heavier track. The track mass
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also has a significant effect on the peak response load speed, especially for the layered ground.
This can be understood by reference to the dispersion curve of the first mode of the ground and
that for the free track. This is illustrated in Fig. 19. Because of the ground mode’s transition from
being close to the Rayleigh wave speed in the half-space at low frequency to being close to the
Rayleigh wave speed of the upper layer at high frequency, its intersection with the free track curve
can move relatively rapidly with increasing track stiffness (or decreasing mass). However, this
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Fig. 18. Magnitude of the vertical velocity spectrum at y ¼ 0m on the ground surface for the four track/ground

combinations when a unit load travels at the corresponding peak response load speed. —, the lighter track on the stiffer

ground; – – –, the heavier track on the stiffer ground; – 
 –, the lighter track on the softer ground; ?, the heavier track

on the softer ground.
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effect whereby the track mass or stiffness may have a large effect on the peak response load speed
depends on the free track curve intersecting the ground mode curve in such a transition where it
has a high slope. In cases where the ground behaves like a half-space or the free track curve does
not intersect the ground mode curve, the effect of the track on the peak response load speed will
be small. If the track mass or stiffness were to be used in practice to control the peak response load
speed, such a measure would have to be planned in the light of the knowledge of the dispersion
curves of the track and the ground at the particular site.

5.2. Effects of multiple axle loads

This section investigates the effects of multiple axle loads on the responses of track–ground
systems. The discussion is based on Eqs. (8) and (9). From Eq. (8), if the loads are axle loads at
O ¼ 0; the vertical displacement of the ground surface is given by

w10ðx; y; tÞ ¼
XM
l¼1

w0
10ðx � al � ct; yÞ *Pl ; ð23Þ

where *Pl denotes the magnitude of the lth axle load, w10ðx; y; tÞ the ground surface vertical
displacement and w0

10ðx; yÞ represents the vertical displacement on the ground surface generated
by a single unit constant force moving at speed c: When the load speed is well below the lowest
phase speed in the track–ground system, the displacement produced by a single force is
attenuated quickly with distance (evanescent wave) and confined near the position of the
force. In this case, the maximum displacement produced by the multiple axle loads is not very
different from that produced by each single axle load. The situation may be different
when the load speed is high enough to excite the propagating wave mode of the track–ground
system. In this case, if the distances between adjacent axles are almost the same and close to the
wavelength of the propagating mode, then as may be deduced from Eq. (23), the responses
produced by each axle load are ‘in phase’ with each other, and add together to give a higher total
response.
However, whatever the train speed is, during the passage of a train of many similar wagons, the

pattern of axles of the wagons may give rise to strong harmonic components. Eq. (9) shows that
the spectra produced by multiple forces of a single frequency (for the quasi-static loads, this
frequency equals zero) are equal to those produced by a unit force of the same frequency moving
at the same speed, times the load spectrum. The load spectrum is given by Eq. (10). The spectra
vanish at frequencies satisfying

PM
l¼1

*PlðOÞe�ial ðO�2pf Þ=c ¼ 0: In principle, this equation shows that
certain frequencies can be eliminated from the excitation of ground vibration by a careful choice
of wagon axle spacing. However, this is not likely to be a practical proposition in order to treat
problem frequencies that are dependent on the ground and track properties of a particular site. It
may, however, offer a choice of speed particular to the vehicle type which reduces certain (narrow)
ranges of excitation frequency.
To represent a train consisting of similar two-axle wagons, let *Pl ¼ P; l ¼ 1; 2;y;M; a1 ¼ 0;

a2 ¼ �b; a3 ¼ �a; a4 ¼ �a � b; a5 ¼ �2a; a6 ¼ �2a � b; etc., where a is the length of each

ARTICLE IN PRESS

X. Sheng et al. / Journal of Sound and Vibration 272 (2004) 909–936930



wagon, and b the distance between two axles within a wagon. Thus, Eq. (10) becomes

SPðf Þ ¼
XM
l¼1

Pei2pfai=c ¼ P
XN

k¼1

e�i2pf ðk�1Þa=c þ P
XN

k¼1

e�i2pf ½ðk�1Þaþb�=c

¼Pð1þ e�i2pfb=cÞ
XN

k¼1

e�i2pf ðk�1Þa=c; ð24Þ

where N denotes the number of wagons. Eq. (24) shows that, at frequencies f ¼ c=ð2bÞ and
f ¼ c=ð2aÞ (if N is even) the load spectrum vanishes, while at frequency f ¼ c=a; the magnitude of
the load spectrum is proportional to the number of wagons. Particularly, when a ¼ 2b; i.e., the
distance between two adjacent axles either within a wagon or in two adjacent wagons is identical,
then at the passing frequency of axles, f ¼ c=b; the load spectrum is 2NP:
To illustrate the harmonic structure of the loading due to multiple axles, the vertical velocity

spectra are presented below for six quasi-static loads (M ¼ 6), of three two-axle wagons (N ¼ 3)
[15], which move on the lighter track on the softer ground. The axle spacing b is 8.96m and the
length of a wagon, a; is 13.82m. The magnitude of force at each axle is set to unity.
Fig. 20 shows the vertical velocity spectra of the ground surface at various distances produced

by the six loads moving at c ¼ 40m/s, well below the lowest wave speed of the ground. The
vertical velocity spectra produced by a single unit constant force of the same speed are shown in
Fig. 21. The load spectrum of the six axle loads, defined by Eq. (10), is shown in Fig. 22. The
harmonic nature of the excitation introduced by the multiple axles is clearly indicated by
comparing the three figures. Fig. 20 also shows that, for each harmonic component, the
attenuation rate near the track is higher than that further away.
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Fig. 20. Vertical velocity spectra of points on the ground surface produced by the six loads moving at 40m/s. (a) On the

track centreline; (b) at 5m; (c) at 10m; (d) at 15m.
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6. Conclusions

In this paper, an investigation has been presented into the nature of ground vibration
propagation in a track–ground system using a previously developed model. The concepts of free
track, ‘fixed-bed’ track and free ground are defined and used to develop understanding of the
nature of wave excitation and propagation in the track–ground system and, in particular, the
phenomenon of a ‘critical’ speed at which high levels of vibration are induced.
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Fig. 21. Vertical velocity spectra of points on the ground surface produced by a single unit constant force moving at

40m/s. (a) On the track centreline; (b) at 5m; (c) at 10m; (d) at 15m.
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From the example results presented here, several conclusions can be drawn on the response
spectrum at the ground to dynamic loading. For a track on a layered ground, near the first cut-on
frequency of the free ground, both the track and the ground have maximum (resonance)
responses. The presence of a track may increase or decrease the resonance frequency depending on
the combination of the ground and the track parameters. The existence of a resonance frequency
indicates the layered structure of the ground.
At very low frequencies, change of the track mass does not significantly affect the responses of

the ground surface to a unit amplitude force at the track. With increasing frequency, a lighter
track produces lower responses than a heavier track due to its higher resonance frequency.
However, for frequencies higher than the resonance frequencies, a heavier track produces less
response than a lighter track.
The ground may have a great effect on the track response compared with the response of the

same track on a rigid foundation, especially for frequencies near the cut-on frequency of the
ground. For the dynamics of a track at low frequencies, consideration of the elasticity and energy
radiation of the supporting ground is necessary.
The response to a non-oscillating but moving load, has been investigated in terms of the effects

of the ground stiffness and track properties on the peak response load speed. For a track on a
homogeneous half-space, the peak response load speed of an axle load will not be greater than the
Rayleigh wave speed in the half-space. In the dispersion diagram, if the dispersion curve of the
free track is above the Rayleigh wave line of the ground, then the peak response load speed is
lower than the Rayleigh wave speed. If the dispersion curve of the free track intersects the
Rayleigh wave line, then the peak response load speed is equal to the Rayleigh wave speed.
Further increasing the track bending stiffness, or decreasing the track mass, does not increase the
peak response load speed. Modification to the track mass leads to only a small reduction of
vibration when the load speed is well below the peak response load speed. However, when the load
speed approaches the peak response load speed, decreasing the track mass has a much greater
effect in reducing the level of vibration.
For a track on a layered ground consisting of a single layer on a deep, stiffer substratum which

is modelled as a homogeneous half-space, the peak response load speed may be greater than the
Rayleigh wave speed associated with the material in the upper layer. The peak response load
speed may be determined by the first intersection of the dispersion curve of the free track and that
of the first mode of the ground, i.e., given by 2pf0=b0; where b0 and f0 are the wavenumber and
frequency at this intersection. Since, for low frequency, the dispersion curve of the first mode of
the ground is close to the Rayleigh wave line of the underlying half-space, increasing the track
bending stiffness or decreasing the track mass can increase the peak response load speed for the
track–ground system so that the peak response load speed is much higher than the Rayleigh wave
speed in the upper layer.
During the passage of a train of many similar wagons, the pattern of axles of the wagons may

give rise to, or suppress, some harmonic components. These harmonic components are formulated
in terms of the dimensions of the wagons as well as of the train speed.
It is worth noting, in addition to the points above, that, for the layered ground, all the main

features of the train/track/ground interaction for both harmonic and moving axle-load excitation
have been explained in terms of the dispersion characteristics and excitation of the first
propagating mode of the ground, rather than any of the higher order modes. Since the first
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ground mode dominates both the interaction behaviour and the response, it may be concluded
that a method to characterize the ground at a particular site should focus on determining its
dispersion characteristic.
Having developed a model to investigate the vibration behaviour of the train/track ground

system, work has also recently been carried out to extend this model to provide predictions of
vibration spectra from trains. This is reported in Ref. [7]. Comparison of such predictions for
three diverse cases where measurement data is available is made in Ref. [16].

Appendix A. Dispersion curves of a layered ground

An undamped ground can sustain free propagating waves in which each particle of the ground
vibrates harmonically at a single frequency. The wavenumbers of the free propagating waves
depend on the frequency of vibration. These free propagating waves are termed the propagating

modes (or simply the modes) of the ground. The propagating modes may be divided into two types:
the P-SV modes (waves) and the SH modes (waves). For a P-SV mode, particles in the ground
have displacement components not only in the vertical direction but also in the horizontal
propagation direction while for a SH mode, the particles vibrate only in a direction parallel to the
ground surface but perpendicular to the horizontal propagation direction. The P-SV modes and
the SH modes in the ground can be uncoupled.
The dispersion curves, which are defined as wavenumbers of propagating modes (P-SV and SH

modes) in the ground plotted against frequency, are helpful in the investigation of the mechanism
of ground vibration, as seen in this paper. There are different methods to calculate the dispersion
curves [12]. The formulae developed in Ref. [6] may also be applied to produce the dispersion
curves. From Eqs. (27) and (28) in Ref. [6], the Fourier transformed displacements and loads
(pressures) on the ground surface are related by

ð½T�21 � ½S�½R��1½T�11Þf*ug10 ¼ ð½T�22 � ½S�½R��1½T�12Þf*pg; ðA:1Þ

where f*ug10 and f*pg are the Fourier transformed displacement vector and the Fourier
transformed load vector on the ground surface, ½R� and ½S� are (3	 3) matrices determined by
the property of the underlying half-space, and ½T�11; etc. are (3	 3) matrices concerning the soil
layers. Putting f*pg ¼ 0 in Eq. (A.1) results in the so-called free vibration equation of the ground

ð½T�21 � ½S�½R��1½T�11Þf*ug10 ¼ 0: ðA:2Þ

For non-zero solutions to exist, the determinant of the coefficient matrix of Eq. (A.2) must be
equal to zero, i.e.,

detð½T�21 � ½S�½R��1½T�11Þ ¼ 0: ðA:3Þ

For a given frequency f ; the real values of b; g satisfying Eq. (A.3), give the wave numbers of
propagating wave modes at that frequency (the waves propagating in the x and y directions).
Eq. (A.3) is termed the dispersion equation of the ground.
Denoting the matrix ½T�21 � ½S�½R��1½T�11 by ½Dðb; g;oÞ� and ½T�22 � ½S�½R��1½T�12 by ½D

0ðb; g;oÞ�;
it can be shown that

½Dðb; g;o� ¼ ½A�½Dð0;r;oÞ�½A�T; ðA:4Þ
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½D0ðb; g;o� ¼ ½A�½D0ð0; r;oÞ�½A�T; ðA:5Þ

where

½A� ¼

sin f cosf 0

�cosf sin f 0

0 0 1

2
64

3
75; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ g2

q
; cosf ¼ b=r; sin f ¼ g=r; ðA:6Þ

½Dð0;r;oÞ� ¼

d11 0 0

0 d22 d23

0 d32 d33

2
64

3
75; ðA:7Þ

½D0ð0;r;oÞ� ¼

d 0
11 0 0

0 d 0
22 d 0

23

0 d 0
32 d 0

33

2
64

3
75; ðA:8Þ

with d11; d22; etc. being complex functions of r and o:
Without loss of generality, the modes can be assumed to be plane waves propagating in the x

direction, i.e., g ¼ 0 and r ¼ b: From Eq. (A.7), the dispersion Eq. (A.3) gives

d11ðb;oÞ ¼ 0 ðA:9Þ

or

d22ðb;oÞd33ðb;oÞ � d23ðb;oÞd32ðb;oÞ ¼ 0: ðA:10Þ

For a given frequency f ; Eq. (A.9) gives the wavenumbers b for SH modes and Eq. (A.10) gives
those for P-SV modes.
Inserting Eqs. (A.4) and (A.5) into Eq. (A.1), the forced displacements can be worked out

*u10 ¼ ½ 1 0 �
d22 d23

d32 d33

" #�1
d 0
22 d 0

22

d 0
32 d 0

33

" #
*px

*pz

( )
; ðA:11Þ

*u10 ¼ d�1
11 d 0

11 *py; ðA:12Þ

*w10 ¼ ½ 0 1 �
d22 d23

d32 d33

" #�1
d 0
22 d 0

22

d 0
32 d 0

33

" #
*px

*pz

( )
: ðA:13Þ

Eqs. (A.11) and (A.13) show that, for plane waves propagating in the x direction, then a vertical
load and/or a longitudinal load on the ground surface only excite(s) P-SV modes which only
contribute to the vertical and longitudinal displacements of the ground surface.

References

[1] A.M. Kaynia, C. Madshus, P. Zackrisson, Ground vibration from high-speed trains: prediction and

countermeasure, Journal of Geotechnical and Geoenvironmental Engineering 126 (2000) 531–537.

[2] V.V. Krylov, Generation of ground vibrations by superfast trains, Applied Acoustics 44 (1995) 149–164.

ARTICLE IN PRESS

X. Sheng et al. / Journal of Sound and Vibration 272 (2004) 909–936 935



[3] H. Takemiya, Simulation of track–ground vibrations due to high-speed trains, Proceedings of the Eighth

International Congress on Sound and Vibration, Hong Kong, China, 2001, pp. 2875–2882.

[4] C.G. Lai, A. Callerio, E. Faccioli, A. Martino, Mathematical modelling of railway-induced ground vibrations,

Proceedings of the International Workshop Wave 2000, Bochum, Germany, 2000, pp. 99–110.

[5] H. Grundmann, M. Lieb, E. Trommer, The response of a layered halfspace to traffic loads moving along its

surface, Archive of Applied Mechanics 69 (1) (1999) 55–67.

[6] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a load moving along a railway track, Journal of

Sound and Vibration 228 (1) (1999) 129–156.

[7] X. Sheng, C.J.C. Jones, D.J. Thompson, A theoretical model for ground vibration from trains generated by

vertical track irregularities, Journal of Sound and Vibration 272 (3–5) (2004) 937–965, this issue.

[8] C. Madshus, A.M. Kaynia, High-speed railway lines on soft ground: dynamic behaviour at critical train speed,

Journal of Sound and Vibration 231 (3) (2000) 689–701.

[9] C.J.C. Jones, X. Sheng, M. Petyt, Simulations of ground vibration from a moving harmonic load on a railway

track, Journal of Sound and Vibration 231 (3) (2000) 739–751.

[10] A.T. Peplow, C.J.C. Jones, M. Petyt, Surface vibration propagation over a layered elastic half-space with an

inclusion, Applied Acoustics 56 (1999) 283–296.

[11] D.V. Jones, The surface propagation of ground vibration, PhD Thesis, University of Southampton, 1987.

[12] X. Sheng, C.J.C. Jones, M. Petyt, The Fourier transformed stationary and moving dynamic flexibility matrices of a

layered ground, Technical Memorandum 873, Institute of Sound and Vibration Research, University of

Southampton, 1999.

[13] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a harmonic load acting on a railway track,

Journal of Sound and Vibration 225 (1) (1999) 3–28.

[14] J. Oscarsson, T. Dahlberg, Dynamic train/track/ballast interaction—computer models and full-scale experiments,

Vehicle System Dynamics 29 (1998) 73–84.

[15] J. Jonsson, Comments to ‘‘Ground Vibration Generated by a Harmonic Load Moving Along a Railway Track’’,

Journal of Sound and Vibration 236 (2) (2000) 359–366.

[16] X. Sheng, C.J.C. Jones, D.J. Thompson, A comparison of a theoretical model for quasi-statically and dynamically

induced environmental vibration from trains with measurements, Journal of Sound and Vibration 267(3) (2003)

621–635.

ARTICLE IN PRESS

X. Sheng et al. / Journal of Sound and Vibration 272 (2004) 909–936936

S0022-460X(03)00782-X

	A theoretical study on the influence of the track on train-induced ground vibration
	Introduction
	The model
	Parameters for track-ground systems
	Results for harmonic loading
	The dispersion characteristics of the ground only
	The receptance of the ground as a function of wavenumber along the track
	Dispersion curves of the tracks and the grounds together
	Dispersion curves for the track only
	Receptances of the track-ground systems
	Receptances of the tracks
	Receptances of the grounds


	Results for quasi-static loading
	Effects of the speed of a single axle load on the responses of track-ground systems
	Track on a homogeneous half-space
	Track on a layered ground

	Effects of multiple axle loads

	Conclusions
	Dispersion curves of a layered ground
	References


